
Wednesday, March 21, 12

Coding & Development

Getting It Into Drupal With
Migrate

Presented by drewish (Andrew Morton)
drewish@katherinehouse.com

Wednesday, March 21, 12

mailto:drewish@katherinehouse.com
mailto:drewish@katherinehouse.com

So You’ve Got This
Old Website...

Wednesday, March 21, 12

Let’s do some shows of hands on what people are doing right now. Feeds? Custom scripts?
Intern data entry? How many just know you’re going to have to in the next 6-months.

My Goals

• Give you mental framework to
understand Migrate.

• Step through the basics of building a
migration.

• Convince to use Migrate rather than
custom one-off scripts and/or add Migrate
support to your modules.

Wednesday, March 21, 12

Put another tool in your toolbox... and just talk you into using feeds.
Migrate has lots of pieces that are badly named making it harder to understand.

Migrate 2.0

• Powerful object oriented framework for
moving content into Drupal.

• Minimal UI, primarily code based.

• Steep learning curve.

Wednesday, March 21, 12

I’ve been using Migrate for almost a year and was annoying enough in the issue queue that
the just made me a maintainer.
<See if Mike and Moshe are in the crowd and introduce them>
Explain the differences between v2 and v1.
aka migraine module, but hopefully this talk will help.

Wednesday, March 21, 12

There’s a basic UI and great drush support. I’m going to ignore them because of time
constraints.

Migrate 2.0

• Drupal 6 requires autoload and dbtng
modules. So the code is very similar in 6
and 7.

• Migrate Extras provides support for many
contrib modules.

• The most comprehensive and up-to-date
documentation is the beer.inc and wine.inc
examples.

Wednesday, March 21, 12

Well these slides are really the best... but the might get out of date.

Why not just use
Feeds?

• If it does what you need, use it. It’s much
easier to setup.

• Migrate is performant, and more flexible
but requires that you write code to map
fields.

• Feeds doesn’t work well if you’ve got
different content types that need to
reference each other.

Wednesday, March 21, 12

Get asked this a lot. I’m pragmatic, use the best tool.

Theory

Wednesday, March 21, 12

Source & Destination

Source
Field 1
Field 2
Field 3
Field ID

Destination
Field 1
Field 2
Field 3

ID

Wednesday, March 21, 12

Source

• Interface to your existing data (SQL, CSV,
XML, JSON).

• Provides a list of fields and descriptions.

• Responsible for iterating over rows.

Wednesday, March 21, 12

Destination

• Responsible for writing a specific type of
data to Drupal, e.g. Node, User, or other
Entity, but could be something like a SQL
row.

• Creates one Destination record for each
Source record.

Wednesday, March 21, 12

Knows how to save it... user_save(), node_save(), entity_save(), db_insert(), etc.
So, if you’re creating users and profiles, you’ll need to do it in two migrations.

Map the Fields

Source
Field 1
Field 2
Field 3
Field ID

Destination
Field 1
Field 2
Field 3

ID

Field Mapping

Field Mapping

Wednesday, March 21, 12

With these pieces you’ve basically got feeds.

Field Mappings

Destination
entity_id field_age field_name

32 34 Larry
33 54 Curly
34 47 Moe

Field Mappings
Source Destination
Name field_name
Age field_age
Other NULL

Source
ID Name Age Other
1 Larry 34 blah
2 Curly 54
4 Moe 47 junk

Wednesday, March 21, 12

Field Mappings

• Links a source field to a destination field.

• Has some basic functions to transform
values splitting on separators, etc.

• Holds additional arguments to pass on to
the destination field.

Wednesday, March 21, 12

Might skip over the source id lookup since we haven’t really talked about migration maps yet.

Migration Map

Source
Field 1
Field 2
Field 3
Field ID

Destination
Field 1
Field 2
Field 3

ID

Field Mapping

Field Mapping

Map

Wednesday, March 21, 12

Now we need to do a little more than what Feeds provides. Lets track IDs so when we import
users and articles we can attribute the articles to the correct user.

Map

• Connects the Source and Destination IDs
allowing translation between them.

• Tracks the keys’ schema format.

• Allows a migration to re-run and update
existing records.

• Allows imported records to be deleted
during a rollback.

Wednesday, March 21, 12

Also provides some other benefits.
Composite keys are supported.

Migration

Migration
Source

Field 1
Field 2
Field 3
Field ID

Destination
Field 1
Field 2
Field 3

ID

Map

Field Mapping

Field Mapping

prepareRow(), prepare(), complete()
Wednesday, March 21, 12

I’m going to ignore those three little functions for now but I just wanted to put them on here
so you can visualize where they live.

Migration

• Sets up all the necessary pieces: Source,
Destination, Map and Field Mappings.

• May provide logic for skipping over rows
during the migration.

• May alter the entities during the
migration.

Wednesday, March 21, 12

Your class that glues all the parts together.

Field Handlers

Migration
Source

Field 1
Field 2
Field 3
Field ID

Destination
Field 1

Field 2

Field 3

ID

Field Handler

Field Handler

Field Handler

Field Mapping

Field Mapping

Map
prepareRow(), prepare(), complete()

Wednesday, March 21, 12

If you think about the way the data would be coming out of the Source it’ll be “flat” values
like strings or integers. Drupal fields are typically nested arrays and something needs to
know the format of those arrays, hence the field handler.

Field Handlers

• Handles the details of converting the
Source value into the structure that
Drupal understands.

• Turns $row->bar = “foo” into
$entity->field_bar[‘und’][0][‘value’] = “foo”

• Might pull additional data out of
arguments.

Wednesday, March 21, 12

Destination Handler

Migration

Destination
Handler(s)

Source
Field 1
Field 2
Field 3
Field ID

Destination
Field 1

Field 2

Field 3

ID

Field Handler

Field Handler

Field Handler

Field Mapping

Field Mapping

Map
prepareRow(), prepare(), complete()

Wednesday, March 21, 12

Destination Handler

• “Magically” extends an existing
destination and adds functionality, e.g.
MigrateCommentNodeHandler adds a comment
status field to nodes.

• Contrib maintainers might need to create
these.

Wednesday, March 21, 12

Practice

Wednesday, March 21, 12

Basic Migrate Module

• Create a new module to so you can disable it
once the site launches.

• Implement hook_migrate_api() in the .module file.

• Create a class that extends Migration and in
the constructor setup the Source, Destination,
Map and Field Mappings.

• Register the class’s file in the .info file.

Wednesday, March 21, 12

If I’m being lazy and it’s only a single migration class I’ll just throw it in the .module file.

Migration Class

• Setup the Source, Destination, Map and
Field Mappings in the constructor:

class BasicExample extends Migration {
 public function __construct() {
 parent::__construct();
 $this->source = ???;
 $this->destination = ???;
 $this->map = ???;
 $this->addFieldMapping(???, ???);
 }
}

Wednesday, March 21, 12

You’ll probably have more than one Field Mapping.

SQL Source
// inside __construct()

$query = db_select('migrate_example_beer_topic',
'met')
 ->fields('met', array('style', 'details',
 'style_parent', 'region', 'hoppiness'))
 ->orderBy('style_parent', 'ASC');

$this->source = new MigrateSourceSQL($query);

Wednesday, March 21, 12

Able to extract the field names from the query. Descriptions are optional.

Or a CSV Source
// The definition of the columns. Keys are integers,
// values are an array of field name then description.
$columns = array(
 0 => array('cvs_uid', 'Id'),
 1 => array('email', 'Email'),
 2 => array('name', 'Name'),
 3 => array('date', 'Date'),
);

// Instantiate the class using the path to the CSV
// file and the columns.
$path = 'path/relative/to/drupal/root/your_file.csv';
$this->source = new MigrateSourceCSV($path, $columns);

Wednesday, March 21, 12

The CSV source can actually use the header row as column names but I’m not going to
demonstrate that.

Other Sources

• There are also classes for importing
content from XML and JSON.

• Lots of variation among sources so expect
to do some tweaking.

Wednesday, March 21, 12

Source Base Classes

• If you can fetch IDs separately from values:

• Use MigrateSourceList as a source

• Implement MigrateList for fetching counts and IDs,
and MigrateItem for fetching values

• If everything is in a single file with IDs mixed in:

• Use MigrateSourceMultiItems as a source

• Implement MigrateItems for extracting IDs and
values

Wednesday, March 21, 12

I don’t really want to get too deep into this. I’m mentioning them so you’ll know they’re here
when you discover you need them.

Migration Map
// inside __construct()

$this->map = new MigrateSQLMap($this->machineName,
 // You’ve got to describe your id’s schema.
 array(
 'style' => array(
 'type' => 'varchar',
 'length' => 255,
 'not null' => TRUE,
)
),
 // Most Destinations provide a helper function:
 MigrateDestinationTerm::getKeySchema()
);

Wednesday, March 21, 12

Destinations
// inside __construct()

// Create terms...
$this->destination = new
 MigrateDestinationTerm('example_beer_styles');

// ...or nodes...
$this->destination = new
 MigrateDestinationNode('article');

// ...or
$this->destination = new
 MigrateDestinationUser();

Wednesday, March 21, 12

Field Mappings
// inside __construct()

// Can be as simple as this…
$this->addFieldMapping('dest_name', 'source_name');

// …or you can chain options onto it…
$this->addFieldMapping('dest_name')
 ->defaultValue(1);

// Lets pretend we already setup $arguments.
$this->addFieldMapping('field_favbeers', 'beers')
 ->separator('|')
 ->arguments($arguments);

Wednesday, March 21, 12

Field Mapping
Arguments

• O"en used to pass multiple source fields
into a single destination field.

• First argument will be the teaser field, the
second argument will always be one:
$this->addFieldMapping('body', 'body')
 ->arguments(array(
 'summary' => array('source_field' => 'teaser'),
 'format' => 1
));

Wednesday, March 21, 12

By default the values passed into the arguments will be used as literals. If you use that wacky
array syntax it’ll replace it with the value from that field on the current row.

Field Mapping
Arguments

$path = drupal_get_path('module', 'migrate_example');
// You could use the helper...
$arguments = MigrateFileFieldHandler::arguments(
 $path, 'file_copy', FILE_EXISTS_RENAME, NULL,
 array('source_field' => 'image_alt'));
$this->addFieldMapping('field_image', 'image')
 ->arguments($arguments);

// Or skip it and end up with more readable code:
$this->addFieldMapping('field_image', 'image')
 ->arguments(array(
 'source_path' => $path,
 'alt' => array('source_field' => 'image_alt'),
));

Wednesday, March 21, 12

So two versions that do the same thing. I’m showing you this to demonstrate that some of
the helpers actually obscure the functionality with out adding much value.

Field Mapping
Source Migrations

• When you have an ID value from the old
system and need to look up the new ID
from the Migration Map:
$this->addFieldMapping('uid', 'author_id')
 ->sourceMigration('BeerUser')

• Add a dependency to make sure the
other migration runs first:
$this->dependencies = array('BeerUser');

Wednesday, March 21, 12

But Wait, There’s
More!

• You can implement methods to customize
the process: prepareRow(), prepare(), complete().

• Yeah, it might be hard to remember which
prepare does what.

Wednesday, March 21, 12

prepareRow($row)

• Passes in the source row as an object so
you can make modifications.

• Can indicate that a row should be skipped
over during the import by returning FALSE.

• Add or change field values by modifying
the properties:
$row->first = drupal_strtoupper($row->first);
$row->created = strtotime($row->access);

Wednesday, March 21, 12

Need to mention that if you add a field in prepareRow() you should really add it to the
Source’s field list.

prepare($entity, $row)

• Passes in the entity object with properties
populated by field mappings, and the
source row.

• Last chance to make changes before the
entity is saved.

• If you have an unsupported field type you
can manually populate it here:
$entity->field_foo[‘und’][0][‘foo’] = $row->foo;

Wednesday, March 21, 12

complete($ent, $row)

• Passes in the saved entity (with any ID
values from auto increment fields) and the
source row.

• This is the place if you need to update other
records to reference the new entity.

• If you’re calling node_save() or entity_save() on
the record you just imported, you’re
probably doing something wrong.

Wednesday, March 21, 12

Dealing With Circular
Dependencies

• Break them by using stubs.

• Specify a sourceMigration(‘BeerUser’) on the ID’s
field mapping.

• Add createStub($migration, $source_key) to BeerUser
which creates an empty record and returns the
new id.

• When BeerUser runs it’ll update the stub and fill
it with the real values.

Wednesday, March 21, 12

Basically one migration asks another to look up the ID mapping, if it doesn’t exists the
second migration will create an empty record to get an ID so the first migration can complete.
Then when the second migration runs it will update the dummy record that was created
earlier.

Import Flow

Migration
Source

Field 1
Field 2
Field 3
Field ID

Destination
Handler(s)

Destination
Field 1

Field 2

Field 3

ID

Field Handler

Field Handler

Field Handler

Field Mapping

Field Mapping

Map
prepareRow(), prepare(), complete()

Wednesday, March 21, 12

Import Flow

• Source iterates until it locates an appropriate record, then
calls the Migration’s prepareRow($row) letting you modify or
reject the data in $row.

• Migration applies the Field Mappings and the Field
Handlers to convert the data in $row into $entity.

• Migration calls prepare($entity, $row) letting you modify the
final entity using data from the Source’s row.

• Destination saves the entity.

• Migration records the IDs into the Map then calls complete()
so you can see the entity’s final ID.

Wednesday, March 21, 12

Supporting Migrate in
Contrib

• If you’re creating new objects (e.g.
Webform Submissions) write a
Destination.

• If you’re writing field modules write a
Field Handler.

Wednesday, March 21, 12

Creating Destinations

• Hopefully you won’t need to…

• If you’re working with entities created by
the Entity API make sure you look at:
http://drupal.org/node/1168196

Wednesday, March 21, 12

http://drupal.org/node/1168196
http://drupal.org/node/1168196
http://drupal.org/node/1168196
http://drupal.org/node/1168196

Creating Field
Handlers

• Look at extending MigrateSimpleFieldHandler
for single value fields.

• In the constructor register your field types.

• In prepare() convert the value into the
format your field requires.

• Optionally, in complete() handle any
followup tasks that require the entity’s ID.

Wednesday, March 21, 12

Questions?

Migration
Source

Field 1
Field 2
Field 3
Field ID

Destination
Handler(s)

Destination
Field 1

Field 2

Field 3

ID

Field Handler

Field Handler

Field Handler

Field Mapping

Field Mapping

Map
prepareRow(), prepare(), complete()

Wednesday, March 21, 12

What did you think?
Locate this session on the
DrupalCon Denver website

http://denver2012.drupal.org/program

Click the “Take the Survey” link.

Thank You!

Wednesday, March 21, 12

http://denver2012.drupal.org/program
http://denver2012.drupal.org/program

